
 Abstract-- In this paper, we introduce a novel method for 
employing image-based rendering to extend the range of 
use of human motion recognition systems. We 
demonstrate the use of image-based rendering to generate 
additional training sets for view-dependent human motion 
recognition systems. Input views orthogonal to the 
direction of motion are created automatically to construct 
the proper view from a combination of non-orthogonal 
views taken from several cameras. To extend motion 
recognition systems, image-based rendering can be 
utilized in two ways: (i) to generate additional training 
sets for these systems containing a large number of non-
orthogonal views, and (ii) to generate orthogonal views 
(the views those systems are trained to recognize) from a 
combination of non-orthogonal views taken from several 
cameras. In this case, image-based rendering is used to 
generate views orthogonal to the mean direction of 
motion.  We tested the method using an existing view-
dependent human motion recognition system on two 
different sequences of motion, and promising initial 
results were obtained. 
 
Index Terms—image-based rendering, human motion 
recognition, computer vision, visual tracking, shape 
reconstruction. 

I. INTRODUCTION 

The problem of using computer vision to track and 
understand the behavior of human beings is a very 
important one.  It has applications in the areas of human-
computer interaction, user interface design, robot learning, 
and surveillance, among others. 
 
Much work has been done in the field of human motion 
recognition. A great deal of this work has been done using 
a single camera providing input to a training-based 
learning method ([1], [3], [4], [8], [9], [10], [12], [16], 
[17], [18], [22], [23]).  Methods that rely on a single 
camera, are highly view-dependent.  They are usually 
designed to recognize motion when viewing all subjects 
from a single viewpoint (e.g., from the side, with the 
subject moving in a direction orthogonal to the camera’s 
line of sight, as in Figure 1). The training becomes 
increasingly ineffective as the angle between the camera 
and the direction of motion varies away from orthogonal.  
As a result, these methods have limited real-world 
applications, since it is often impossible to limit the 
direction of motion of people. 

 
Figure 1. A single frame of human motion taken from a 
camera positioned orthogonal to the direction of motion. 

 
Many of the methods track a single person indoors for 
both gesture recognition and whole body motion 
recognition ([1], [4], [22], [23]). Bregler details a method 
for motion analysis by modeling the articulated dynamics 
of the human body in outdoor scenes taken from a single 
camera [3]. Analysis of human gaits is also very popular 
in this domain. Statistical learning methods were 
developed by Fablet and Black to characterize walking 
gaits from 12 angles [8]. Additionally, Polana and Nelson 
studied the periodicity of the legs while walking or 
running to classify pedestrian motion [17]. Gavrila and 
Davis [10] used multiple synchronized cameras to 
reconstruct 3D body pose and study human motion based 
on 3D features, especially 3D joint angles. Experimental 
data was taken from four near-orthogonal views of front, 
left, right, and back. Oliver et. al. used coupled hidden 
Markov models along with a Kalman filter in a 
hierarchical approach to track and categorize motion [16]. 
 
Rosales and Sclaroff [18] developed a trajectory-based 
recognition system that is trained on multiple view angles 
of pedestrians in outdoor settings.  This system can avoid 
the common problem of being limited in its ability to 
recognize motion from only a small set of view angles.  
However, the method requires a tremendous amount of 
training data. Difranco et. al. [6] tackle the problem of 
reconstructing poses from challenging sequences like 
athletics and dance from a single view point based on 2D 
correspondences specified either manually or by separate 
2D registration algorithms.  They also describe an 
interactive system that makes it easy for users to obtain 
3D reconstructions very quickly based on a small amount 
of manual effort. In [11], Luck et. al. generate a 3D 
voxelized model of a moving human, extracting the 
moving form using adaptive background subtraction and 
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thresholding in real-time. Joint angle constraints are used 
to reconstruct an 11-degree of freedom model of the body. 
Additionally, silhouettes have been used widely as tools 
for recognition. Weik and Liedtke [21] use 16 cameras 
and a shape-from-silhouette method to build a model 
template for the body, which is then matched to volume 
data generated in each successive frame.  Pose analysis is 
performed based on an automatic reconstruction of the 
subject's skeleton. Silhouettes are also used by [2] and [5] 
to classify poses. 

II. DESCRIPTION OF THE WORK 

We are studying the use of image-based rendering to 
generate additional training sets for these motion 
recognition systems. Orthogonal input views can be 
created automatically using image-based rendering to 
construct the proper view from a combination of non-
orthogonal views taken from several cameras (Figure 2). 

 

 
Figure 2. Camera positions relative to motion path. 

 
Image-based rendering can be applied to motion 
recognition in two ways: (i) to generate additional training 
sets containing a large number of non-orthogonal views 
and (ii) to generate orthogonal views (the views that 2D 
motion recognition systems are trained for) from a 
combination of non-orthogonal views taken from several 
cameras.  Figure 3 shows two examples of non-orthogonal 
novel views generated from three different real camera 
views using image-based rendering. 

 
The advantage of the first approach is that action 
recognition can still be performed using a single camera. 
However, view-dependent recognition may not be suitable 
for certain views (e.g., an action performed along the 
optical axis). This may be due to shortcomings in the 
specific recognition algorithm or merely because the 
information content from that view is not sufficient for 
action recognition. The second approach resolves this 
issue by always generating a content-rich orthogonal 
view, or other appropriate view optimized for recognition 
of specific actions. This requires the use of multiple 
synchronized cameras during the recognition phase (rather 

than the training phase).  The bulk of this paper focuses 
on this second approach. 
 
 
 
 
 
 
 
 
 
Figure 3. Two non-orthogonal novel views generated by 

the image-based renderer. 
 
To test the system, images created by the image-based 
renderer are processed by an existing view-dependent 
human motion recognition system (subsection F).  
 
The system consists of the following steps: 

1) Capture synchronized video sequences from 
several cameras spread around the perimeter of 
an area of interest. 

2) Calibrate the cameras and compensate for wide-
angle lens distortions. 

3) Segment the subject in the images (separate 
foreground / background). 

4) Reconstruct the motion path of the subject in the 
3D world frame. 

5) Calculate the optimal “virtual” camera intrinsic 
and extrinsic parameters for use in the image-
based renderer. 

6) Use an image-based renderer to create 
orthogonal views as training and test data.  

7) Test the views using a view-dependent motion 
recognition system. 

A. Image Capture 

The use of image-based rendering requires capturing 
multiple views of the same scene simultaneously.  We 
implemented this approach for our human motion 
recognition application with three video cameras 
positioned around one half of a room (see Figure 4). 
 
We used three Panasonic GP-KR222 digital video 
cameras, with Rainbow auto-iris lenses.  Two of the 
lenses were wide-angle, with focal lengths of 3.5mm, 
while the third had a focal length of 6mm.  Each camera 
was connected to a VCR, and the video was recorded onto 
three VHS tapes.  The video from the tapes was then 
digitized and separated into sequences of single frames, 
and all three sequences were synchronized. The cameras 
were calibrated to determine all intrinsic and extrinsic 
parameters using the method of Masoud et. al. described 
in [13].  In addition, the images were corrected for lens 
distortion due to the wide-angle.  For part of this 
procedure we used the process of Ojanen [15]. 



 

 
Figure 4. Layout of cameras for synchronized capture. 

 
Camera 1 

 
Camera 2 

 
Camera 3 

 
Figure 5. Images of a single running sequence captured 
from 3 cameras positioned around a room (undistorted). 

B. Foreground Segmentation 

It was necessary to isolate the human for reconstruction in 
each frame.  This required an automated process to 
separate the human (foreground) from the background of 
the room.  We attempted a variety of approaches to this 
problem, and found that the best results could be achieved 
by using a combination of simple background subtraction, 
chromaticity analysis, and morphological operations. 
 
Each frame in the motion sequence was subtracted from 
the background image in grayscale.  This is a simple, 
standard approach, and is well known to fail in many 
cases where adaptive backgrounding has been found to be 
more robust, particularly in changing environments such 
as outdoor scenes [20].  Since our sequences were taken 
indoors, background subtraction performed quite well, 
with the exception of leaving significant shadows below 
the subject in the foreground image (see Figure 6).  This 

was particularly problematic in our case, since articulation 
of the legs is critical for motion recognition. 
 
To address this problem, we converted the RGB images 
into chromaticity space in an approach similar to that 
described by Elgammal et. al. [7].  We then applied a 
subtraction and threshold operation to the each frame (see 
Figure 6).  This approach worked very well at removing 
shadows, but had the negative effect of also removing 
much of the valid foreground.   
 

 

 
Figure 6.   Foreground process (left to right): Source 

image, background subtraction image containing shadow, 
chromaticity subtraction image, weighted chromaticity 
subtraction image, and composite mask with shadow 

removed. 
 
To retain the best qualities of each method, we generated 
a composite mask for the final foreground image.  This 
mask was a linear combination of the mask generated by 
background subtraction and the chromaticity mask.  The 
chromaticity mask was first multiplied by a linear 
confidence weighting, with full confidence at the bottom 
of the bounding box of the subject (to remove shadows) 
and zero confidence at the top (to avoid the chromaticity 
mask removing valid foreground). Lastly, a series of 
standard morphological operations such as hole filling, 
dilation, and erosion were applied to the composite mask.   

C. Calculation of Motion 

From each foreground mask, a perimeter outline image 
was calculated.  This perimeter was used to calculate 
input silhouette contours for the image-based rendering 
(see subsection E below). It was also used to extract the 
centroid (based on the perimeter) and the bottom center of 
the subject in each image (see Figure 7). 



 

 
Figure 7. Silhouette perimeter images with centroid and 

bottom center point displayed. 
 

The bottom center point is simply the point where a 
vertical line drawn through the centroid of the figure 
intersects the horizontal line at the bottom of the mask in 
the perspective of each camera.  These points are used to 
calculate the location of the subject on the plane of the 
floor in the world frame. We chose the world frame 
relative to camera 1 and constructed the geometry using 
the transformations from the calibration step. The 
subject’s position is calculated by projecting each of the 
three points into the world frame and calculating the 
Euclidean mean.  When this is done at each time step, the 
subject’s entire motion path along the floor can be 
tracked.  Figure 8 shows the three bottom center points 
projected into the world frame for the first and last 
positions in the running sequence, along with the averaged 
position estimates. 

D. Determination of Virtual Camera Parameters 

To create the optimal input for the motion recognition 
system, it is critical to position the virtual camera such 
that it is orthogonal to the mean motion path of the 
subject.  These calculations were done in the world frame 
using the results of the calibration procedure.  
 

 
Figure 8. Running path and virtual camera’s position 

relative to fixed cameras for the subject’s motion 
sequence. 

 
It is also important to consider the limitations of the 
image-based renderer when choosing the viewpoint for 

the virtual camera.  The quality of reconstructed views 
provided by image-based rendering degrades as the 
viewpoint of the virtual camera moves away from the 
views of the real cameras in the scene.  Therefore, we 
chose to position the virtual camera center in a plane 
between the real cameras (see Figure 8).  The virtual 
camera’s orientation was calculated to intersect the 
midpoint of the motion path at 90 degrees.  In addition, 
the field of view of the virtual camera was automatically 
calculated to encompass the entire motion sequence 
without introducing wide-angle distortions. 

E. Image-Based Rendering of Orthogonal Views 

To generate novel views, we use an image-based 
approach. Image-based methods have several advantages 
over other volume- or 3D-based methods. Efficiency and 
realism are two such advantages. Given the parameters of 
a novel virtual camera, we use an approach similar to 
view morphing [19]. The views we use to render the new 
image are those of the nearest two cameras. Our approach 
differs in that we do not restrict the novel camera center to 
lie on the line connecting the centers of the two cameras. 
In order for view morphing to work, depth information in 
the form of pixel correspondences needs to be provided. 
To compute this, we use an efficient epipolar line clipping 
algorithm [14] which is also image-based. This method 
uses the silhouettes of an object to compute the depth map 
of the object’s visual hull. Once the depth map is 
computed, it is trivial to compute pixel correspondences. 
 

 
Figure 9. Rendered orthogonal walking sequence. 

 

 
Figure 10. Rendered orthogonal running sequence. 



F. Motion Recognition System 

As mentioned earlier, we use a view-dependent human 
motion recognition method [12] to study the feasibility of 
our approach. This motion recognition system uses 
principal component analysis to represent a periodic 
action as a set of points (a manifold) in a low dimensional 
eigenspace. Training involves computing, for each action, 
an “average” manifold, which is used as a representation 
for that action. The manifold of a new action (whose 
images are computed orthogonally using image-based 
rendering) is then compared to all representative 
manifolds by computing a distance measure. The 
minimum distance is used to determine the classification 
result.  
 
The images of an action are first processed to produce 
feature images. These images capture instantaneous 
motion since they are computed by recursively filtering 
the sequence images. Figure 11 shows some examples of 
feature images computed for the sequence in Figure 9.  
 

 
Figure 11. Examples of feature images corresponding to 

the snapshots shown in Figure 9.  These images are 
computed by recursive filtering and are used by the 

recognition algorithm. 
 
In the training phase, a basis consisting of the principle 
components is first computed using all feature images of 
the training data. Then, each feature image is projected 
using the basis. Thus, an action can be represented as a 
sequence of points in an eigenspace (a manifold). For 
every action, the average manifold is computed and stored 
in a database. Testing is performed by computing the 
manifold of the test action and finding the action in the 
database whose manifold is most similar. The comparison 
is done using a Hausdorff-like metric that is invariant to 
the phase and speed of the action.  In our experiments, the 
system was trained to classify an action into one of eight 
categories: walk, run, skip, march, hop, line-walk, side-
walk, and side-skip. Training sequences were provided by 
eight subjects performing all eight actions while moving 
orthogonal to the camera (a total of 64 sequences). The 

subjects used in testing were not among those eight 
subjects. 

III. RESULTS 

We tested the virtual views produced by the image-based 
renderer on the walking and running sequences shown 
above, and used the original training data captured from 
sequences taken orthogonal to the subject’s motion, as in 
Figure 1.  Each image sequence was processed in three 
ways and each was input to the motion recognition 
system.  
 
The first set of three input sequences consisted of the 
source video sequences taken from all three cameras. In 
all cases, the system failed to identify the motion.  This 
was true even when part of the sequence was orthogonal 
to the camera and the mean motion path was near 
orthogonal. 
 

Test Sequence Angle from  Result 
 Orthogonal  

Subject A Walking   
Camera 1 source images 74.1ο Failed 
Camera 2 source images 15.9ο Failed 
Camera 3 source images 81ο Failed 
Foreground images 15.9ο Failed 
Image-based rendered 
orthogonal images 

0ο Motion 
recognized 

Subject B Running   
Camera 1 source images 44.5ο Failed 
Camera 2 source images 45.5ο Failed 
Camera 3 source images 69.9ο Failed 
Foreground images 44.5ο Failed 
Image-based rendered 
orthogonal images 

0ο Motion 
recognized 

 
The fourth input sequence in each case was the set of 
foreground images of the camera that had the smallest 
angle away from orthogonal (see Figure 8). We tested the 
foreground sequence to ensure that any classification 
result was not due to simply removing the background and 
thus somehow better isolating the subject’s motion for the 
recognition system.  In this case, the system also failed to 
classify the motion correctly. 
 
The fifth input sequence was the set of virtual images 
generated by the image-based renderer from a view 
orthogonal to the motion path (see Figures 9 and 10).  
This sequence was correctly identified for both motions. 

IV. CONCLUSIONS/FUTURE WORK 

The method described here may be used in several ways 
to reduce the constraints necessary to employ 2D 
recognition in many environments.  This may be done by 



creating a comprehensive set of training data for 2D 
motion recognition methods with views of motion from 
all angles, or by converting non-orthogonal views taken 
from a single camera into orthogonal views for 
recognition.  In addition, the method can be used to 
provide input to a three-dimensional motion recognition 
system because the system creates a 3D volume model of 
the subject over time using only foreground segmentation. 
 
In the future, we intend to test the method 
comprehensively with a large base of subjects and motion 
types.  In addition, we intend to test the system in outdoor 
as well as indoor environments, and attempt to determine 
image capture parameters such as the minimum angle 
where recognition begins to degrade and the number of 
cameras necessary to achieve various levels of 
performance. 
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