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Abstract 
 
This paper deals with real-time image processing of crowded outdoor scenes with the 
objective of creating an effective traffic management system that monitors urban settings 
(urban intersections, streets after athletic events, etc.). The proposed system can detect, 
track, and monitor both pedestrians (crowds) and vehicles. We describe the characteristics 
of the tracker that is based on a new detection method. Initially, we produce a motion 
estimation map. This map is then segmented and analyzed in order to remove inherent 
noise and focus on particular regions. Moreover, tracking of these regions is obtained in 
two steps: fusion and measurement of the current position and velocity, and then 
estimation of the next position based on a simple model. The instability of tracking is 
addressed by a multiple-level approach to the problem. The computed data is then 
analyzed to produce motion statistics. Experimental results from various sites in the Twin 
Cities area are presented. The final step is to provide this information to an urban traffic 
management center that monitors crowds and vehicles in the streets.  

1 Introduction 
Monitoring crowded urban scenes is a difficult problem. Despite significant advances in 
traffic sensors, modern monitoring systems cannot handle effectively busy intersections.  
The reason is that there are too many moving objects (vehicles, and pedestrians). 
Tracking humans in outdoor scenes is also very complex.  The number of pedestrians and 
vehicles in a scene varies and is usually unpredictable. Recently, there was progress on 
techniques to track an arbitrary number of pedestrians simultaneously. However, as the 
number of pedestrians increases, system performance degrades due to the limited 
processing power. When the number of pedestrians exceeds a threshold value, the 
processing rate drops dramatically. This makes it hard to keep accurate track of every 
pedestrian and vehicle because of the large displacement among pedestrian and vehicle 
locations in the processed frames. 
We propose a vision-based system that can detect, track, and monitor busy urban scenes. 
Our system is not only limited to vehicles but can deal with pedestrians and crowds. Our 
approach is robust to a variety of weather conditions and is based on an efficient scheme 
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to compute and approximation of optical flow. The optical flow helps us classify the 
different objects in the scene while certain statistics for each object are continuously 
updated as more images become available. 
Addressing busy intersections can have a significant impact on several traffic operations 
in urban areas and on some more general applications. One traffic operation which can be 
affected is the automated walk  signal request. Currently, a pedestrian is required to press 
a button to request a walk signal at a crosswalk. It may be desirable to automate this 
process especially when there is a large number of pedestrians waiting to cross the street. 
Crowd detection can be used in this case. Another application is the study of flow 
patterns at certain intersections. It may be desirable as a city planning consideration to 
study the use of crosswalks at a certain intersection. Flow data of pedestrians crossing the 
street throughout the day can be collected and used to make decisions such as building a 
pedestrian bridge, etc. Finally, our proposed system may be used to monitor crowds 
outside schools, nursing homes, train tracks, and at athletic events. One interesting 
application is to compute crowd density (with obvious public safety applications). In 
general, monitoring areas where accidents occur often can result into early warning 
signals and can reduce deadly consequences. 
The paper starts with a review of previous work, continues with the detection and 
tracking schemes and concludes with experimental results. 

1.1  Previous work  
Many methods have been proposed for the detection and tracking of moving objects; 
many of those have focused on the detection and tracking of traffic objects. The 
applications of this line of research are multiple: tracking of targets, vision-based robot 
manipulators, presence detectors, analyzers of visual data, etc.  
The first generation trackers made several assumptions regarding the nature of the objects 
in the scene. These assumptions resulted in acceptable tracking performance but on the 
other hand, they were not robust to changes in the scene (e.g., movement of the camera or 
small changes in the shape of the object). Baumberg and Hogg in [1] introduced one of 
first trackers. It was based on active contours to track the silhouette of a person. Others, 
such as Rossi and Bozzoli in [2], addressed the problem by locating the camera above the 
scene, which avoids the creation of occlusions. But this kind of practice is not easy to 
implement especially in traffic applications. The systems described require extensive 
models of the objects to be tracked. They also require some knowledge of their dynamic 
characteristics. We are going to use only a few assumptions on the models in order not to 
restrict our tracker to a single class of detection. For example, no limits will be assumed 
for the velocities of the traffic objects, their sizes, their acceleration, or their shape.   
 
Systems based only on a background subtraction give good results but fail to detect and 
track traffic entities when they get close to each other. One example of such a method can 
be found in [3]. Our system extends that approach by utilizing motion cues. 
 
Cutler and Tuck [4] developed a recognition and classification module for motion. It 
aimed to interpret gestures. Their work is based on the analysis of moving areas in a 
video sequence. This makes it more of a motion classifier than a tracker. Our detection 
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method is close to [4] and to Dockstader’s work [5], which addressed robust motion 
estimation.  

2 Processing of the Image Sequences 

2.1 Detection 
We have developed a new method to detect blobs. Because outdoor environments cannot 
be modeled accurately, it is difficult to separate the traffic objects from the background. 
Moreover, the great differences between day and night (see Figure 1) explain why a 
robust detector needs to be developed. In the case of groups of people, it is difficult to 
decompose a group into individuals. Instead, one would attempt to track the group as one 
entity. A possible way to do this is to calculate the movement of each point and then 
group together points with similar motion characteristics. 
 

  
(a) Night video (b) Day video 

Figure 1. Traffic Scenes from the Xcel Energy Center in St Paul. 

2.1.1 Nature of the video sequences and preprocessing 
Images from the outdoor video sequences that we used are grayscale. We do not make 
any assumptions on the nature of the scene (night, day, cloudy, rainy, winter, summer, 
etc.). Elements of the scene are not known a priori and the sizes of the traffic objects 
(vehicles and pedestrians) are also unknown. An assumption that we make is that a crowd 
is a slow deformable object with a principal direction of motion. 
This assumption is not restrictive for our objectives, but it can be restrictive in the case of 
vehicles. A traffic tracker must be able to track objects that vary from a simple pedestrian 
to a complex crowd.  
Outdoor images can have very bad quality, especially at night. In the preprocessing phase, 
it is necessary to remove noise. We achieve this goal by convolving the images with a 
Gaussian filter. We can also apply a mask to the image to remove the undesired regions 
such as roads, flashing billboards, or reflective building walls.  

2.1.2 Background removal 
In [6], Haritaoglu et al. modeled the background by following a statistical approach. The 
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detection of people is achieved by subtracting this background from the new images (see 
Figure 2). The parameters of the background are re-evaluated with every new image. The 
model uses a Gaussian distribution for each pixel and a comparison-evaluation for every 
frame. The classification of foreground/background is done at this time by combining all 
the previous results. This approach creates a very good separation between the two 
possible classes (foreground, background). However, no other information can be 
extracted from this technique. In particular, during the motion of two crowds past each 
other, one cannot estimate the speed or direction. This method is useful in the case of 
easily distinguishable objects with slow motion. In our case, a pixel by pixel scan would 
be relatively slow. 
 

 
(a) First image (b) Background model (c) Detected blobs 

Figure 2. Background creation. 

2.1.3 Motion extraction 
Another idea for the detection part of our approach is to consider the optical flow for a 
precise extraction of the motion in the scene. It is a very difficult problem to solve in real-
time, however. This paper tries to address some of the computational issues related to 
optical flow estimation. Like Sun [7], Dockstader et al. [5], and other researchers, we will 
concentrate on the speed requirements of the algorithm, more than on the accuracy of the 
estimation of the optical flow. Using optical flow estimation, our method is able to 
distinguish objects occluding each other if part of them is still visible and has different 
motion characteristics (see Figure 3).  
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Figure 3. Two detection zones going in opposite directions. 

2.2 Optical flow 
In [8], Galvin et al. give a comparison of estimation algorithms for optical flow. Of all 
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the algorithms presented, only two will be considered because of their simplicity and 
speed. The others, such as fast separation in pyramids, the robust estimation of Black and 
Anandan [9], or the wavelet decomposition for fast and accurate estimation by Bernard 
[10], are too complex to implement in real-time.  

2.2.1 Definition 
The optical flow represents the 2D projection of the 3D velocity map of the scene on the 
camera plane  (see Figure 4). The motion flow (the 3D velocity vectors map) is the true 
motion of each object. Because we cannot measure it, we just compute the projection of it 
on a plane. As a result, all the movements along the z axis which are not perceived by the 
sensor and will not be computed. 
 

Motion flow

Optical flow

Motion of ObjectO

 

Figure 4. Optical flow and motion flow. 

2.2.2 Mathematical approach 
In optical flow estimation, it is generally assumed that the intensity I  is constant over a 
displacement velocity ),( vu  of an object between two frames and time interval t∂ : 

 ),,(),,( tttvytuxItyxI ∂+∂⋅+∂⋅+=  ( 1 ) 

A Taylor expansion of the right hand side of ( 1 ) gives: 
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Setting ( 1 )=( 2 ), we get the following equation: 
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In reality, this equation is not directly applicable due to the lack of constraints on u  and 
v . 

2.2.3 Differential method 
This method is explained in Barron et al. [11]. It was also used by Rwekamp and Peter 
[12] with the goal of using ASIC processors for the real-time detection of movement. The 
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idea is to use a minimization procedure where a spatial estimate of the derivative by a 
Laplacian is employed. One may use a spatial iterative filter to obtain a more precise 
estimation.  
We have experimented with this method using a floating point implementation as well as 
an integer implementation (for efficiency concerns). Based on our experiments, we 
concluded that although this method works well with synthetic images, it is sensitive to 
noise which is present in our video sequences. In addition, the computational cost is 
prohibitive (less than 1 fps in the floating point implementation). For these reasons, we 
decided to explore other methods.  

2.2.4 Correlation method  

Principle 
We look for the velocity vector of each pixel by analyzing its motion between two 
successive images: iI  and 1−iI . To know the position of the pixel in the next image iI , 

we calculate a similarity value on all the possible destinations. This value can be obtained 
using standard sum of square differences (SSD) or sum of absolute differences (SAD). In 
all the cases, we have to go through a Disc (see Figure 5) in iI  around the original 

localization of the pixel in 1−iI  and to compute the function for all the positions of the 

Disc. Then, the minimal value is sought, and thus we obtain the best position in the Disc 
of iI . This position corresponds to the movement of the pixel of iI  and thus the optical 

flow is derived. The Disc can be also called a ‘pattern’ (which is not necessarily circular). 
 

Disc

 

Figure 5. Correlation approach. 

Simple approach 
If we use SAD as the cost function, then for each point ),( yxp =  in the image, we 
calculate: 
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This value must give the minimum over the Disc as the sum on the neighborhood. The 
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computation is done in a serial way for each pixel. We just do a simple raster scan (see 
Figure 6(a)). At the end, we have the motion map for the pixels. 
 

Next pixel  
(a) Raster scan 

B CA

A B C
Différence

TmpBuf

Disc

 
(b) Optimized correlation 

Figure 6. Two ways to see the correlation. 

Optimized approach 
We utilized our hardware (Matrox Genesis vision board) in implementing a parallel 
version of this approach. The optimized approach has the following phases: 
 
Phase 1: Parallel calculation of the cost function  
 
Here, we calculate all the differences for a position of the Disc. All the simple arithmetic 
operations can be done on sub-windows (child buffers). In our case, we define as many 
sub-windows as the number of positions in the Disc. In other words, if the Disc contains 
N  points, we have N  sub-windows gathered in a single TmpBuf buffer array and 
indexed by their positions. Each one will contain the result of a subtraction between 
image iI  and the image 1−iI , but with a spatial shift corresponding to the position of the 

point in the Disc (see Figure 6(b)).  
To do this, we use a sliding window in image iI  and a fixed window at the center of 

image 1−iI . We compute the difference between these windows, which have the same 

size, and then we convolve the difference image with a kernel of ones. Thus, we have the 
sum and therefore the value of the cost function for this position in the Disc. The result is 
saved in TmpBuf. Then, we move the window of image iI  to reach another position of 

the Disc and so on. The kernel can be of size 3x3, 5x5, …, 11x11. The larger it is, the less 
the noise will be. But that also means less sensitivity. A good compromise is a size of 5x5 
or 7x7. 
 
Phase 2: Retrieval of indices of minimal cost 
 
At the end of the algorithm, we seek the minimum value of the cost function for each 
pixel moved. The imaging hardware can calculate the minimum M  between two images 



8 

kI  and lI  by the formula:  

 )),(),,(min(),( jiIjiIjiM lk=  ( 5 ) 

We augment the cost values with indices (locations in Disc) to retrieve the flow. 
A last optimization, or rather approximation, is to define a Disc where only the principal 
axes are used. We keep for example the horizontal and vertical axes and the diagonals. 
This approximation is not restrictive (see Cutler [4]). Also, the radius of Disc itself can be 
made small. The cameras used are usually rather far away from the scene and motion 
does not exceed 2 to 3 pixels per frame. Therefore, a typical Disc is defined as follows: 
1  1  1 
 1 1 1  
1 1 1 1 1 
 1 1 1  
1  1  1 

Noise removal 
To remove the noise from the images during the correlation, thresholding is used. It is 
known (see Cutler [4]) that a video CCD camera has a Gaussian white noise of amplitude 

Kσ  with 5.2=σ  and 10to5=K  according to the model of the camera. In our 
difference calculation, the conclusion is that an absolute difference less than σ6  is 
considered as noise. 
As the noise is white, the calculation of the cost function at the central position gives the 
value of the noise at each pixel. Moreover, after convolution, this noise is averaged. A 
thresholding with 2KernelKS ⋅⋅= σ  gives a mask corresponding to the level of noise. 
Thus, the points that give a lower value than this level are not to be taken into our optical 
flow estimate. For example with a kernel 5x5, we obtain 375565.2 2 =⋅⋅=S . 

Results 
The results are very good for the estimation part. The kernel that was used for the 
summation is 7x7. On 320x240 images with a Disc of 3±  pixels, the processing rate is 
approximately 4 fps. On 160x120 images and by using the same Disc, we reached 
computational speeds of 10 fps.  

Conclusion for our application 
This method is very adaptable to our problem. The limitation of the size of the Disc does 
not prevent it from having a good separation between moving parts and noise. It is a 
robust and fast method: we reach the 15 fps with a Disc radius of 2±  pixels.  

2.3 Background  
To detect the static traffic objects or people, we need another way to approach the 
problem. For these cases, we use a detection scheme that subtracts the image from the 
background. The idea is based on an adaptive background update. The update equations 
are as follows: 
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where bkgndM  is the background, framecurrent I  is the current image, and mask opt.I  is the mask 

obtained after binarization of the optical flow. Every 16 iterations, the background is 
completely readjusted. 
The detection is carried out at every new estimation of the optical flow by a simple 
subtraction of the background and thresholding with Kσ4  (a value much higher than the 
one for the flow). Then, we merge the results obtained by these two methods by assigning 
the background a special value (meaning that the blob comes from the second type of 
detection and not from the optical flow). The estimation of the optical flow is dominating 
on the background (in the case of double detection). That processing leads to a unified 
color map mixing the two methods and having a lookup table describing the motion and 
the nature of each point. The points belonging to the background are associated to no 
motion and no position in the Disc.  

2.4 Segmentation  
The segmentation is the next step. In our case, the choice of an effective method is not 
obvious. The goal is to use some information from this stage during the tracking phase.  

2.4.1 Clustering the motion map from the optical flow 
For this simple stage, we have various choices: a raster scan, a border following or a 
floodfill algorithm. Figure 7 shows the three methods. 
 

 
(a) Raster Scan (b) Border Following (c) Floodfill 

Figure 7. Classic methods for segmentation. 

Raster scan 
This method is very effective for zone segmentation and detection in the case of large 
shapes that may have holes. The algorithm consists of dividing the image into runs and 
memorizing the similar parts in a run. It is very fast and the computational time is only 
dependent on the size of the image, not its content. On the other hand, it requires two 
passes to obtain the segmentation and it must maintain a chain-list of runs. Therefore, it 
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has a high memory requirement that need to be appropriately managed to guarantee 
sufficient speed. Statistics relating to the zones (e.g., size, area, the minimal bounding 
rectangle, the mean velocity estimated by the flow) can be calculated on the fly and do 
not require additional stages. We just have to go through the chain-list of runs to gather 
the data.   

Border following 
In this case, we follow only the contours of objects. This approach dramatically reduces 
the time used to go through the entire area, but does not allow the detection of internal 
holes. If we want to gather pixels having a different value inside an region, we must enter 
the zone and the algorithm looses its efficiency. Furthermore, border following does not 
make it possible to calculate all the desirable statistics.  

Floodfill 
In computer graphics, this simple technique allows filling regions with a color. The basic 
idea is to recursively check the four different directions at every pixel (starting from a 
seed pixel). Each time a pixel is visited, it is marked so that it does not get visited again. 
Statistics are computed on the fly due to the fact that we go through all the pixels of the 
shape.   

Conclusion on the choice of the algorithm 
Comparisons are summarized in Table 1. The floodfill method offers the most 
advantages, is unquestionably slower than the border following and a little slower than 
the raster scan, but allows to segment shapes having internal variations.  
 
Algorithm Speed Statistics Comparison Memory Segmentation 
Raster Scan Medium Yes Lines Chain-list Yes, 2 passes 
Border follow Fast Incomplete Borders Chain-list Holes not visited 
Floodfill Slow Yes Local,4 dirs Dbl. Buf Yes, 1 pass 

Table 1. Comparison of classical algorithms for segmenting an image. 

2.4.2 Two features computed by the segmentation 

Rotation 
When an object is in slow rotational motion, the pixels describing the object move 
according to a local gradient. Each point has a direction slightly different from its 
neighbor. Therefore, if the rotation is not fast, the floodfill algorithm help us gather all 
these close pixels. In this method, we adjust a validation parameter: the maximum angle 
between two directions. To calculate the difference between two angles, the following 
formula is used: 
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This approach also helps maintain all the pixels which are static. 

Shape fitting 
After the segmentation, the blobs are shaped in simple geometrical shapes. At this stage, a 
minimum bounding box can be calculated. The floodfill algorithm makes the procedure 
easier since it provides all the points contained in the shape. At the end of the 
segmentation, the blobs are described by the minimum bounding box, the position of their 
centers, and the number of pixels they contain (or mass). A better adaptation to a more 
complex shape can be carried out at this stage (oriented bounding box) and will be 
explained later. 

3 Tracking 
Tracking is an essential component of the system. A diagram of the system is shown in 
Figure 8. 
 

Background

Merging

Segmentation

Blob

Monitor

Statistics

Video

Optical flow

Region Crowd

Model/Estim Model/Estim

 

Figure 8. Tracking system. 

As explained above, optical flow is estimated by the correlation method and the 
background is used to find motionless foreground objects. The fusion of both is then 
segmented into blob entities.   
Blobs are used for the layers model. They serve as measurements for higher level entities. 
A confidence value is associated to each of the possible links between two entities. If 
blobs are strongly connected more than three times in a row, we create a region (higher 
layer). The confidence value for two entities depends on the overlap surface, the distance, 
and speed similarity.   
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3.1 Layer model 

3.1.1 First level: blobs 
We model a blob using its position, size, area, and velocity. The first three parameters are 
computed by the floodfill algorithm during segmentation. If we add a pixel, ),( yxP , to 
the blob, we have: 
 
Size 
Let Size  be an accumulator. So each time we add a pixel, we do: 11 += −nn SizeSize  

 
Position  
Let cX , cY  be accumulators. We define their sum by: 
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Then at the end of the floodfill, we compute the centroid using the first moment:  
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Velocity 
Let xV , yV be accumulators. Since pixel velocity is stored as an index into Disc,  we get 

its displacement xD , yD  by looking up the pattern: 
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Then, we have the global velocity of the blob:  
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Area (minimum bounding box) 
Let MinX,MaxX,MinY and MinY be values of the sides of the box. We have: 

x)MinX,min(MinX = , x)MaxX,max(MaxX = , and similarly for MinY and MaxY. 
And so Area=( MaxX-MinX) *(MaxY-MinY). 
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These blobs describe all zones in the optical flow. Their modeling is easy and fast. The 
floodfill algorithm is needed here if we want to have that kind of description.  

3.1.2 Second level: regions 
The intrinsic parameters are the same as for the blobs. The differences are in the way we 
compute their values. The regions inherit values from their parent blobs at their creation 
but they are adapted during the tracking. Other properties, like the time of existence or 
inactivity, are also used for regions.   

3.2 Geometrical description of the entities 
The tracking part has been improved by the introduction of new blob descriptions. 
Relations based on simple bounding boxes are clearly not effective for very mobile and 

close objects (such as distant pedestrians). Moreover, the density ( Area
Mass ) of a crowd 

is badly represented by this approach. Therefore, we compute oriented rectangles instead 
of horizontally aligned boxes. We want to preserve simplicity and efficient computation 
of these shapes.   

3.2.1 Oriented boxes 

 Covariance Matrix 
For a 2-D space of n points, we have a covariance matrix M  between the two variables 
X  and Y . It is defined by:  
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The marks <>  mean that we take the variance value. 

Eigenspace representation 
We use a technique often associated with the principal components analysis: the 
diagonalization reduction. This representation results in finding maximum dispersions by 
analyzing eigenvalues and eigenvectors. Given M , its decomposition is written as: 

∆∆= DM t , with ∆  being the transition matrix, and D  the diagonal matrix with 

eigenvalues. Let [ ]21 ,vv=∆  and 
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1v  gives the direction of elongation and 1e  gives the total elongation. The second axis 

is described by 2v  and 2e . 

For example, Figure 9 describes a two dimensional distribution. Using this scheme, the 
two vectors and the resulting rectangle are shown. In our algorithm, we include a 
multiplicative coefficient equal to 1.5 for the two sides. The elongation obtained after 
diagonalization is often a box smaller than the real area. For a better fit, we increase this 
box to include a bigger part of the distribution.  
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Figure 9. Oriented box on a distribution. 

Overlap 
The overlap is a quantity between 0 and 1 that represents the degree of intersection 

between two rectangles. It is equal to 
Area Maximum

Area Overlap
. Overlap Area is the area of region 

of intersection between the two rectangles. It is computed by polygon clipping (see 
shaded areas in Figure 10). Maximum Area is the larger area of the two rectangles. 
 

 

Figure 10. Overlap Area. 

3.3 Details of relations 
All the relations are based on confidence values ),( βα  which reflect the similarity 
between two entities A  and B . We introduce thresholds to define the presence or 
absence of a relation between two entities. In our tracker, the value α  will be related to 
the position and the area of the objects while the value β  will be related to the similarity 
in motion direction deduced from optical flow. Our merging algorithm is based on a score 
calculation between entities.  
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3.3.1 Relations based on scores 

We propose to create a tracking method based on scores of each blob iB  with regard to a 

region A . Then, we keep only a percentage of the best related blobs that we use in a 
Kalman filter as measurement. The introduced score will be used as confidence value for 
the filtering. 

Score dependent on position  
During this phase, we have the positions and descriptions for blobs and regions. First, we 
compute the distance with a fuzzy model using the distance between the two centroids 
and the perimeter of each rectangle. We introduce a confidence term by normalizing the 
distance by a multiple of the perimeter (a factor of 2 is used in our implementation). 
Therefore, we deduce the fuzzy value Distance:  
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A cost function is then defined on the position: 
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In the case of blob-to-blob relation, the coefficients are (5,5) instead of (7,3). This is 
explained by the fact that a relationship between a region and a blob is supposed to be 
based more on the overlap than the position.  

Score dependent on angle 
We start by calculating the angle difference. We also use a fuzzy model as before. This 
time, we use a threshold to accept the minimal value of angle difference:  
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3.3.2 Heuristic combination 
Once these two coefficients are calculated, we look for the best heuristic combination 
between the various objects. For that, we combine the results of all the blobs with 
themselves and with the regions.  
First, we test if the α  value found for a relation is higher than a threshold (to guarantee a 
minimal connection between objects). Then once this stage is validated, we add the value 
β  to α . This last value provides the final cost function for the relations. All the entities 
(regions or blobs) are tested and the relationships are calculated. Then, we keep the group 
of the best relationships or the best relationships. 
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Regions creation based on blob-to-blob relationships 
During each loop, we preserve the previous list of blobs to check which of the new blobs 
are related to the preceding ones. These relationships are one-to-one. A counter on each 
previous entity specifies if a link has already been created before. The counter is 
propagated from one entity to another and thus gives the total number of blobs related in 
a row. If this value exceeds a threshold (2 in our case), then we create a new region 
inheriting the parameters of the last linked blob. The minimal threshold is taken such that 
we have at least %50>α in each relation.   

Merging many blobs  
The relationships between blobs and regions are many-to-many. In other words, several 
blobs can be used as measurements for a region. A threshold, %10>α , ensures a 
minimal relationship. Then, we create a list of the relationships ranging between 70% of 
the maximum value and the maximum value itself. This group of blobs will be used to 
estimate the location measurement of the region at the next loop. For this, we compute 
the centroid, the minimal bounding box, and the mean velocity of the group. Then, we use 
this information in the regions measurement/estimation part (filtering).   

3.4 State space representation of regions 

3.4.1 State vector and data splitting 
The positions x  and y  are related to the region centroid. The other parameters are the 
covariances and the mass (number of pixels).  
We can describe all regions by a state representation: let X  be the state vector that 
describes a region:  
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So our system has the following state equation: 
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The parameters are only estimated and do not have real physical significance. The 
measurement equation is:  

 WXCY +⋅=  ( 18 ) 

with: 
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It is clear that the system can be split into smaller systems: one for coordinates and 
speeds, and four for each feature of the shape. 

3.4.2 Position characteristics: 
We use a constant velocity model for the coordinates, 
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and, 
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1V  is a white Gaussian noise that depends on the system. Its covariance has a matrix that 
has an estimate for limit. In our case: 
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And yx σσ =  shows the system's standard-deviation in position while yx && σσ =  shows the 

one in velocity. 

3.4.3 Shape features  
In the same way, we obtain: 
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2V  is a white Gaussian noise that depends on the feature. Its covariance has an estimate 
for limit: 
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3.5 Kalman filtering 
The Kalman filter makes it possible to merge measurements assuming that we know their 
reliability. Furthermore, It allows to optimally estimate the next state of the system. The 
process to be estimated must be controlled by a differential equation, linear and 
stochastic. We will not extend on the subject since our study requires only a first order 
filtering. We have the following equations:  

3.5.1 Position filtering 

Measurement equations: 
Kalman gain:  

 ( ) 1ˆˆ −
+⋅⋅⋅⋅= n

T
n

T
nn RCPCCPK  ( 25 ) 

State correction:  

 ( )nnnnn XCYKXX ˆˆ ⋅−⋅+=  ( 26 ) 

Variance: 

 
nnn P)K(IP ˆ⋅−=  ( 27 ) 
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Temporal equations: 
System:  

 
nn XAX ⋅=+1

ˆ  ( 28 ) 

Variance propagation:  

 
n
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ˆ  ( 29 ) 

3.5.2 Shape filtering 
In the case of scalar values instead of matrices, the measurement equations do not change, 
except for the fact that we have real values, not vectors. In addition, A = 1. We can use 
the following equations:  
Kalman Gain:  

 

nn

n
n

RP

P
K

+
=

ˆ

ˆ
 

( 30 ) 

State correction:  

 ( )nnnnn XYKXX ˆˆ −⋅+=  ( 31 ) 

Variance:  

 
nnn PKP ˆ)1( ⋅−=  ( 32 ) 

System:  

 
nn XX =+1

ˆ  ( 33 ) 

Variance propagation:  

 
nnn QPP +=+1

ˆ  ( 34 ) 

3.5.3 Parameter values 

Now, we have to define the various parameters of the filtering that the matrices nQ and 

nR , and the scalars nQ  and nR represent. The terms depend on the kind of measurement 

or on the system (measurements variances or internal noise). The internal noise of the 
system will manage the changes of motion and shapes.  

System noise parameters 
The positions lie between 0 and 160 pixels for X and 0 and 120 for Y. We can consider 
that the two axes are independent and contain the same noise ratio. Because the intervals 
of values are close, we use a block diagonal matrix nQ . The speeds lie between 0 and 

some pixels, moreover acceleration will be included as noise in speed. Based on 
experiments, we take 01.0, =yxσ , and 0001.0, =yx &&σ . The following assignment is used: 
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The mass is regarded as a constant varying from 0 to a few thousands. It must keep a 
constant value and for this reason, we try to assign it very small internal noise (for 
example a standard-deviation of 0.01). Therefore, we take 201.0=Q .  
The covariance values of matrix M  (see Section 3.2.1) are between 0 and a few units. 
The internal noise must be small to handle slow changes in shapes and to avoid 
continuous changes (for example a standard-deviation of 0.01). We choose 201.0=Q .  

Measurement noise parameters 

The nR  matrix depends on the confidence value 
5

βα + , computed previously. We use an 

empirical formula (deduced from experiments) to find:  
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Then, for the positions, we say that X and Y measurements are not correlated and have 

the same noise. Therefore, 



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2

2
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0
nR . 

For the state parameters, we found that Σ=nR  gives good results. 

3.5.4 Initialization 
We initialize the filtering at the current position of the region and a zero speed, because 
the value obtained by the optical flow is not accurate enough at this stage. The matrix 0P  

is reset to zero. The intrinsic characteristics are initialized with the current region values 
and 0P  is set to zero. 

4 Experimental Results 
We tried our algorithms in several outdoor scenes from the Twin Cities area. One area 
where one may find crowds is around the Xcel Energy Center in St Paul. We filmed 
scenes during day and night. We also applied our method on a video during winter at a 
road intersection to check the quality of the tracking when vehicles drive past each other 
in opposite directions. The optical flow and the first layer (blobs) give the required 
statistics on crowds: direction, size, and mean velocity.   

4.1 General comments 
The speed of our software depends on the quality of the detection done by the optical 
flow approach. In the general case, a Disc with a radius of 1 pixel is enough to detect 
objects on images with size of 160x120 pixels. All the results are obtained with a 5x5 
Kernel, which allows a very good detection without significant corruption by noise. Then, 
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our tracker runs at 15 fps with all the characteristics displayed on 4 different screen 
buffers on the same monitor: optical flow map, background, tracked regions, and most 
used zone. If we increase the detection with a Disc of radius 2, the frame rate drops to 10 
fps. Here, we should mention the following observation for the quality of the tracking. 
One thing worth mentioning is that in case some frames have to be dropped, it is 
important to drop the same number of frames consistently. For example, the pattern 
would be one frame processed followed by two dropped and so on. Otherwise we get 
temporal instability. The reason is that optical flow estimation assumes that the time 
interval between two frames is always the same. For this reason, our tracker runs at 

speeds of either 15 fps or 10 fps, or 
1

30
+n

 fps (n being the number of skipped frames). 

4.2 Statistics 
The first result we present shows statistics gathered over a period of time 2=T minutes. 
These statistics were computed from optical flow, blobs, and regions. The values are 
shown in Table 2. The statistics were computed by accumulating the flow, region, and 
blob directions during T . In the case of optical flow, the table shows the percentage of  
pixels moving in different directions (the values in parenthesis show the percentage out of 
moving pixels only). In the case of blobs (and regions), the percentages are also of pixels 
but the directions are of blobs (and regions) containing these pixels. The frame rate was 
10 fps. Notice that blobs were not able to sufficiently capture the motion in direction 135. 
This is due to the fact that blobs may be accurately initialized in terms of direction when 
the underlying motion of pixels is not consistent. This also stresses the need for the 
regions level which was able to capture that direction based on blob information even 
though the information is not accurate. Notice also that the most frequent region direction 
is 0 whereas the most frequent pixel direction is –45. This is merely a quantization issue 
since pixel directions are quantized while region directions are not. 
The density represents the ratio of the number of pixels in a blob (or region) to the area of 
the bounding box of the blob (or region). This value exceeds 1 because of inaccuracies of 
modeling the blob (or region) as a rectangle. However, it is a useful indicator to identify a 
crowd; a region representing a crowd would have a high density (above 0.75). Other 
parameters that can be used to identify a crowd are the area (sufficiently large) and the 
speed (sufficiently small). 
 
Direction (degrees) Optical Flow Blobs Regions 

Mass (pixels) 2,019,710 1,947,316 2,255,602 
Area (pixels) N/A 1,136,066 1,433,754 

Density (Mass/Area) N/A 1.7 1.57 
No Motion 39 N/A N/A 

-135 6 (10) 6 13 
-90 6 (10) 1 5 
-45 20 (33) 1 8 
0 6 (10) 79 44 
45 6 (10) 3 8 
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90 2 (3) 3 5 
135 12 (20) 1 13 
180 0 (0) 2 0 

Table 2. Statistics on 821 frames during 120 seconds. 

4.3 Most used area 
Figure 11 is a representation of most used areas in the scene which is a direct result 
computed by accumulating optical flow values over a period of 2 minutes. 
 

 

Figure 11. Most used areas during two minutes of day video. 

4.4 Tracking results 
Figure 12, Figure 13, Figure 14, and Figure 15 show some of the tracking results. The 
results are presented as snapshots every 2 seconds. Rectangles represent regions. Regions 
with a cross represent detected crowds. The numbers shown are the region identifiers. 
Images marked ‘Back’ are background. Images marked ‘MUA’ show most used areas. 
Images marked ‘Opt’ show optical flow and optical flow segmentation. 

5 Conclusions 
This paper presents a vision-based system for monitoring crowded urban scenes. Our 
approach combines an effective detection scheme based on optical flow that can locate 
vehicles, individual pedestrians, and crowds. The detection phase is followed by the 
tracking phase that tracks all the detected entities. Traffic objects are not simply tracked 
but a wealth of information is gathered about them (position, velocity, 
acceleration/deceleration, bounding box, and shape features). Potential applications of our 
methods include intersection control, traffic data collection, and even crowd control after 
athletic events. Extensive experimental results for a variety of weather conditions are 
presented. Future work will be focused on methods to deal with shadows and occlusions.  
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Figure 12. Results from a day video. 
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Figure 13. Results from a night video. 
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Figure 14. Results from a real-time video. 
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Figure 15. Results from a winter video. 
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